课程表 1
你这个学期必须选修 numCourse 门课程,记为 0 到 numCourse-1 。
在选修某些课程之前需要一些先修课程。 例如,想要学习课程 0 ,你需要先完成课程 1 ,
我们用一个匹配来表示他们:[0,1]
给定课程总量以及它们的先决条件,请你判断是否可能完成所有课程的学习?
解题思路:
- 本题可约化为: 课程安排图是否是 有向无环图(DAG)。即课程间规定了前置条件,但不能构成任何环路,否则课程前置条件将不成立。
- 思路是通过 拓扑排序 判断此课程安排图是否是 有向无环图(DAG) 。
- 拓扑排序原理: 对 DAG 的顶点进行排序,使得对每一条有向边 (u,v),均有 u(在排序记录中)比 v 先出现。亦可理解为对某点 v 而言,只有当 v 的所有源点均出现了,v 才能出现。
- 通过课程前置条件列表
prerequisites
可以得到课程安排图的 邻接表adjacency
,以降低算法时间复杂度,以下两种方法都会用到邻接表。
方法一:入度表(广度优先遍历)
算法流程:
- 统计课程安排图中每个节点的入度,生成 入度表 indegrees。
- 借助一个队列 queue,将所有入度为 0 的节点入队。
- 当 queue 非空时,依次将队首节点出队,在课程安排图中删除此节点 pre:
- 并不是真正从邻接表中删除此节点 pre,而是将此节点对应所有邻接节点 cur 的入度 −1,即 indegrees[cur] -= 1。
- 当入度 −1后邻接节点 cur 的入度为 0,说明 cur 所有的前驱节点已经被 “删除”,此时将 cur 入队。
- 在每次 pre 出队时,执行 numCourses--;
- 若整个课程安排图是有向无环图(即可以安排),则所有节点一定都入队并出队过,即完成拓扑排序。换个角度说,若课程安排图中存在环,一定有节点的入度始终不为 0。
- 因此,拓扑排序出队次数等于课程个数,返回 numCourses == 0 判断课程是否可以成功安排。
public boolean canFinish(int numCourses, int[][] prerequisites) {
int[] indegrees = new int[numCourses];
List<List<Integer>> adjacency = new ArrayList<>();
Queue<Integer> queue = new LinkedList<>();
for (int i = 0; i < numCourses; i++)
adjacency.add(new ArrayList<>());
// Get the indegree and adjacency of every course.
for (int[] cp : prerequisites) {
indegrees[cp[0]]++;
adjacency.get(cp[1]).add(cp[0]);
}
// Get all the courses with the indegree of 0.
for (int i = 0; i < numCourses; i++)
if (indegrees[i] == 0) queue.add(i);
// BFS TopSort.
while (!queue.isEmpty()) {
int pre = queue.poll();
numCourses--;
for (int cur : adjacency.get(pre))
if (--indegrees[cur] == 0) queue.add(cur);
}
return numCourses == 0;
}
Comments | 0 条评论