树的基本概念
有序树、无序树、森林
二叉树
二叉树的性质
真二叉树
满二叉树
完全二叉树
完全二叉树的性质
index以1为起点
index以0为起点
方法及实现
二叉树的遍历
前序遍历
访问顺序:根节点、前序遍历左子树、前序遍历右子树 (左右可互换)
//前序遍历
public void preorder(Visitor<E> visitor) {
if (visitor == null) return;
preorder(root, visitor);
}
private void preorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
visitor.stop = visitor.visit(node.element);
preorder(node.left, visitor);
preorder(node.right, visitor);
}
class Solution {
public List<Integer> preorderTraversal(TreeNode root) {
LinkedList<TreeNode> stack=new LinkedList<>();
LinkedList<Integer> ans=new LinkedList<>();
if(root==null) return ans;
stack.add(root);
while (!stack.isEmpty()){
TreeNode node=stack.pollLast();
ans.add(node.val);
if(node.right!=null){
stack.add(node.right);
}
if(node.left!=null){
stack.add(node.left);
}
}
return ans;
}
}
中序遍历
访问顺序:中序遍历左子树、根节点、中序遍历右子树 (左右可互换)
二叉搜索树的中序遍历结果是升序或者降序的
//中序遍历
public void inorder(Visitor<E> visitor) {
if (visitor == null) return;
inorder(root, visitor);
}
private void inorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
inorder(node.left, visitor);
if (visitor.stop) return;
visitor.stop = visitor.visit(node.element);
inorder(node.right, visitor);
}
public List<Integer> inorderTraversal(TreeNode root) {
LinkedList<Integer> ans = new LinkedList<>();
Stack<TreeNode> stack = new Stack<>();
TreeNode cur = root;
while (cur != null || !stack.empty()) {
while (cur != null) {
stack.push(cur);
cur = cur.left;
}
cur = stack.pop();
ans.add(cur.val);
cur = cur.right;
}
return ans;
}
后序遍历
访问顺序:后序遍历左子树、后序遍历右子树、根节点 (左右可互换)
//后序遍历
public void postorder(Visitor<E> visitor) {
if (visitor == null) return;
postorder(root, visitor);
}
private void postorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
postorder(node.left, visitor);
postorder(node.right, visitor);
if (visitor.stop) return;
visitor.stop = visitor.visit(node.element);
}
public List<Integer> postorderTraversal(TreeNode root) {
LinkedList<TreeNode> stack=new LinkedList<>();
LinkedList<Integer> ans=new LinkedList<>();
if(root==null) return ans;
stack.add(root);
while (!stack.isEmpty()){
TreeNode node=stack.pollLast();
ans.addFirst(node.val);
if(node.left!=null){
stack.add(node.left);
}
if(node.right!=null){
stack.add(node.right);
}
}
return ans;
}
层序遍历
从上到下、从左到右依次访问每一个节点
实现思路:使用队列
-
将根节点入队
-
循环执行以下操作,直到队列为空
-
将队头节点 A 出队,进行访问
-
将 A 的左子节点入队
-
将 A 的右子节点入队
-
//层序遍历
public void levelOrder(Visitor<E> visitor) {
if (root == null || visitor == null) return;
Queue<Node<E>> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
Node<E> node = queue.poll();
if (visitor.visit(node.element)) return;
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
前驱节点与后继节点
前驱节点
前驱节点:中序遍历时的前一个节点
如果是二叉搜索树,前驱节点就是前一个比它小的节点
-
node.left!=null
- predecessor = node.left.right.right.right... (终止条件为right==null)
-
node.left == null && node.parent != null
- predecessor = node.parent.parent.parent... (终止条件为:node 在 parent 的右子树中)
-
node.left == null && node.parent == null
-
没有前驱节点
//前驱节点: 中序遍历时的前一个节点
protected Node<E> predecessor(Node<E> node) {
if (node == null) return null;
// 前驱节点在左子树当中(left.right.right.right....)
Node<E> p = node.left;
if (p != null) {
while (p.right != null) {
p = p.right;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
while (node.parent != null && node == node.parent.left) {
node = node.parent;
}
// node.parent == null
// node == node.parent.right
return node.parent;
}
后继节点
与前驱节点相反
//后继节点:中序遍历时的后一个节点
protected Node<E> successor(Node<E> node) {
if (node == null) return null;
// 前驱节点在左子树当中(right.left.left.left....)
Node<E> p = node.right;
if (p != null) {
while (p.left != null) {
p = p.left;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
while (node.parent != null && node == node.parent.right) {
node = node.parent;
}
return node.parent;
}
面试题
题目一:完全二叉树根据节点求叶子节点个数
题目二:翻转二叉树
-
解法一:递归
public TreeNode invertTree(TreeNode root) { if (root == null) return root; TreeNode tmp = root.left; root.left = root.right; root.right = tmp; invertTree(root.left); invertTree(root.right); return root; }
-
解法二:非递归
public TreeNode invertTree(TreeNode root) { if (root == null) return null; Queue<TreeNode> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { TreeNode node = queue.poll(); TreeNode tmp = node.left; node.left = node.right; node.right = tmp; if (node.left != null) queue.offer(node.left); if (node.right != null) queue.offer(node.right); } return root; }
题目三:计算二叉树的高度
-
解法一:递归
public int height() { return height(root); } private int height(Node<E> node) { if (node == null) return 0; return 1 + Math.max(height(node.left), height(node.right)); }
-
解法二:非递归
public int height() { if (root == null) return 0; // 树的高度 int height = 0; // 存储着每一层的元素数量 int levelSize = 1; Queue<Node<E>> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { Node<E> node = queue.poll(); levelSize--; if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } if (levelSize == 0) { // 意味着即将要访问下一层 levelSize = queue.size(); height++; } } return height; }
题目四:判断一棵树是否为完全二叉树
public boolean isComplete() {
if (root == null) return false;
Queue<Node<E>> queue = new LinkedList<>();
queue.offer(root);
boolean leaf = false;
while (!queue.isEmpty()) {
Node<E> node = queue.poll();
if (leaf && !node.isLeaf()) return false;
if (node.left != null) {
queue.offer(node.left);
}
if (node.left == null && node.right != null) {
return false;
}
if (node.right != null) {
queue.offer(node.right);
}
if (node.left == null && node.right == null) {
leaf = true;
}
}
return true;
}
总代码
@SuppressWarnings("unchecked")
public class BinaryTree<E> {
protected int size;
protected Node<E> root;
public static abstract class Visitor<E> {
boolean stop;
/**
* @return 如果返回true,就代表停止遍历
*/
abstract boolean visit(E element);
}
protected static class Node<E> {
E element;
Node<E> left;
Node<E> right;
Node<E> parent;
public Node(E element, Node<E> parent) {
this.element = element;
this.parent = parent;
}
public boolean isLeaf() {
return left == null && right == null;
}
public boolean hasTwoChildren() {
return left != null && right != null;
}
}
public int size() {
return size;
}
public boolean isEmpty() {
return size == 0;
}
public void clear() {
root = null;
size = 0;
}
//前序遍历
public void preorder(Visitor<E> visitor) {
if (visitor == null) return;
preorder(root, visitor);
}
private void preorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
visitor.stop = visitor.visit(node.element);
preorder(node.left, visitor);
preorder(node.right, visitor);
}
//中序遍历
public void inorder(Visitor<E> visitor) {
if (visitor == null) return;
inorder(root, visitor);
}
private void inorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
inorder(node.left, visitor);
if (visitor.stop) return;
visitor.stop = visitor.visit(node.element);
inorder(node.right, visitor);
}
//后序遍历
public void postorder(Visitor<E> visitor) {
if (visitor == null) return;
postorder(root, visitor);
}
private void postorder(Node<E> node, Visitor<E> visitor) {
if (node == null || visitor.stop) return;
postorder(node.left, visitor);
postorder(node.right, visitor);
if (visitor.stop) return;
visitor.stop = visitor.visit(node.element);
}
//层序遍历
public void levelOrder(Visitor<E> visitor) {
if (root == null || visitor == null) return;
Queue<Node<E>> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
Node<E> node = queue.poll();
if (visitor.visit(node.element)) return;
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
}
}
public boolean isComplete() {
if (root == null) return false;
Queue<Node<E>> queue = new LinkedList<>();
queue.offer(root);
boolean leaf = false;
while (!queue.isEmpty()) {
Node<E> node = queue.poll();
if (leaf && !node.isLeaf()) return false;
if (node.left != null) {
queue.offer(node.left);
} else if (node.right != null) {
return false;
}
if (node.right != null) {
queue.offer(node.right);
} else { // 后面遍历的节点都必须是叶子节点
leaf = true;
}
}
return true;
}
//树的高度,非递归
public int height() {
if (root == null) return 0;
// 树的高度
int height = 0;
// 存储着每一层的元素数量
int levelSize = 1;
Queue<Node<E>> queue = new LinkedList<>();
queue.offer(root);
while (!queue.isEmpty()) {
Node<E> node = queue.poll();
levelSize--;
if (node.left != null) {
queue.offer(node.left);
}
if (node.right != null) {
queue.offer(node.right);
}
if (levelSize == 0) { // 意味着即将要访问下一层
levelSize = queue.size();
height++;
}
}
return height;
}
//树的高度,递归
public int height2() {
return height(root);
}
private int height(Node<E> node) {
if (node == null) return 0;
return 1 + Math.max(height(node.left), height(node.right));
}
//前驱节点: 中序遍历时的前一个节点
protected Node<E> predecessor(Node<E> node) {
if (node == null) return null;
// 前驱节点在左子树当中(left.right.right.right....)
Node<E> p = node.left;
if (p != null) {
while (p.right != null) {
p = p.right;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
while (node.parent != null && node == node.parent.left) {
node = node.parent;
}
// node.parent == null
// node == node.parent.right
return node.parent;
}
//后继节点:中序遍历时的后一个节点
protected Node<E> successor(Node<E> node) {
if (node == null) return null;
// 前驱节点在左子树当中(right.left.left.left....)
Node<E> p = node.right;
if (p != null) {
while (p.left != null) {
p = p.left;
}
return p;
}
// 从父节点、祖父节点中寻找前驱节点
while (node.parent != null && node == node.parent.right) {
node = node.parent;
}
return node.parent;
}
}
Comments | 0 条评论