二叉搜索树的概念

二叉搜索树的接口设计

添加节点

public void add(E element) {
	elementNotNullCheck(element);
	
	// 添加第一个节点
	if (root == null) {
		root = new Node<>(element, null);
		size++;
		return;
	}
	
	// 添加的不是第一个节点
	// 找到父节点
	Node<E> parent = root;
	Node<E> node = root;
	int cmp = 0;
	while (node != null) {
		cmp = compare(element, node.element);
		parent = node;
		if (cmp > 0) {
			node = node.right;
		} else if (cmp < 0) {
			node = node.left;
		} else { // 相等
			node.element = element;
			return;
		}
	}

	// 看看插入到父节点的哪个位置
	Node<E> newNode = new Node<>(element, parent);
	if (cmp > 0) {
		parent.right = newNode;
	} else {
		parent.left = newNode;
	}
	size++;
}

根据内容获取节点

private Node<E> node(E element) {
    Node<E> node = root;
    while (node != null) {
        int cmp = compare(element, node.element);
        if (cmp == 0) return node;
        if (cmp > 0) {
            node = node.right;
        } else { // cmp < 0
            node = node.left;
        }
    }
    return null;
}

删除节点

删除节点为叶子节点

删除节点--度为1的节点

删除节点--度为2的节点

private void remove(Node<E> node) {
    if (node == null) return;

    size--;

    if (node.hasTwoChildren()) { // 度为2的节点
        // 找到后继节点
        Node<E> s = successor(node);
        // 用后继节点的值覆盖度为2的节点的值
        node.element = s.element;
        // 删除后继节点
        node = s;
    }

    // 删除node节点(node的度必然是1或者0)
    Node<E> replacement = node.left != null ? node.left : node.right;

    if (replacement != null) { // node是度为1的节点
        // 更改parent
        replacement.parent = node.parent;
        // 更改parent的left、right的指向
        if (node.parent == null) { // node是度为1的节点并且是根节点
            root = replacement;
        } else if (node == node.parent.left) {
            node.parent.left = replacement;
        } else { // node == node.parent.right
            node.parent.right = replacement;
        }
    } else if (node.parent == null) { // node是叶子节点并且是根节点
        root = null;
    } else { // node是叶子节点,但不是根节点
        if (node == node.parent.left) {
            node.parent.left = null;
        } else { // node == node.parent.right
            node.parent.right = null;
        }
    }
}

二叉搜索树继承自二叉树

时间复杂度分析

二叉搜索树的时间复杂度主要由树的高度决定,而与树的节点个数没有关系

添加、删除节点都有可能使二叉搜索树退化为链表

平衡:当节点数量固定时,左右子树的高度越接近,这棵二叉树就越平衡(高度越低)

总代码

  • BST

    import java.util.Comparator;
    
    @SuppressWarnings("unchecked")
    public class BST<E> extends BinaryTree<E> {
        private Comparator<E> comparator;
    
        public BST() {
            this(null);
        }
    
        public BST(Comparator<E> comparator) {
            this.comparator = comparator;
        }
    
        public void add(E element) {
            elementNotNullCheck(element);
    
            // 添加第一个节点
            if (root == null) {
                root = new Node<>(element, null);
                size++;
                return;
            }
    
            // 添加的不是第一个节点
            // 找到父节点
            Node<E> parent = root;
            Node<E> node = root;
            int cmp = 0;
            do {
                cmp = compare(element, node.element);
                parent = node;
                if (cmp > 0) {
                    node = node.right;
                } else if (cmp < 0) {
                    node = node.left;
                } else { // 相等
                    node.element = element;
                    return;
                }
            } while (node != null);
    
            // 看看插入到父节点的哪个位置
            Node<E> newNode = new Node<>(element, parent);
            if (cmp > 0) {
                parent.right = newNode;
            } else {
                parent.left = newNode;
            }
            size++;
        }
    
        public void remove(E element) {
            remove(node(element));
        }
    
        public boolean contains(E element) {
            return node(element) != null;
        }
    
        private void remove(Node<E> node) {
            if (node == null) return;
    
            size--;
    
            if (node.hasTwoChildren()) { // 度为2的节点
                // 找到后继节点
                Node<E> s = successor(node);
                // 用后继节点的值覆盖度为2的节点的值
                node.element = s.element;
                // 删除后继节点
                node = s;
            }
    
            // 删除node节点(node的度必然是1或者0)
            Node<E> replacement = node.left != null ? node.left : node.right;
    
            if (replacement != null) { // node是度为1的节点
                // 更改parent
                replacement.parent = node.parent;
                // 更改parent的left、right的指向
                if (node.parent == null) { // node是度为1的节点并且是根节点
                    root = replacement;
                } else if (node == node.parent.left) {
                    node.parent.left = replacement;
                } else { // node == node.parent.right
                    node.parent.right = replacement;
                }
            } else if (node.parent == null) { // node是叶子节点并且是根节点
                root = null;
            } else { // node是叶子节点,但不是根节点
                if (node == node.parent.left) {
                    node.parent.left = null;
                } else { // node == node.parent.right
                    node.parent.right = null;
                }
            }
        }
    
        private Node<E> node(E element) {
            Node<E> node = root;
            while (node != null) {
                int cmp = compare(element, node.element);
                if (cmp == 0) return node;
                if (cmp > 0) {
                    node = node.right;
                } else { // cmp < 0
                    node = node.left;
                }
            }
            return null;
        }
    
        /**
         * @return 返回值等于0,代表e1和e2相等;返回值大于0,代表e1大于e2;返回值小于于0,代表e1小于e2
         */
        private int compare(E e1, E e2) {
            if (comparator != null) {
                return comparator.compare(e1, e2);
            }
            return ((Comparable<E>) e1).compareTo(e2);
        }
    
        private void elementNotNullCheck(E element) {
            if (element == null) {
                throw new IllegalArgumentException("element must not be null");
            }
        }
    }
    
  • BinaryTree

    import java.util.LinkedList;
    import java.util.Queue;
    
    import com.mj.printer.BinaryTreeInfo;
    
    @SuppressWarnings("unchecked")
    public class BinaryTree<E> implements BinaryTreeInfo {
    	protected int size;
    	protected Node<E> root;
    
    	public int size() {
    		return size;
    	}
    
    	public boolean isEmpty() {
    		return size == 0;
    	}
    
    	public void clear() {
    		root = null;
    		size = 0;
    	}
    
    	public void preorder(Visitor<E> visitor) {
    		if (visitor == null) return;
    		preorder(root, visitor);
    	}
    
    	private void preorder(Node<E> node, Visitor<E> visitor) {
    		if (node == null || visitor.stop) return;
    
    		visitor.stop = visitor.visit(node.element);
    		preorder(node.left, visitor);
    		preorder(node.right, visitor);
    	}
    
    	public void inorder(Visitor<E> visitor) {
    		if (visitor == null) return;
    		inorder(root, visitor);
    	}
    
    	private void inorder(Node<E> node, Visitor<E> visitor) {
    		if (node == null || visitor.stop) return;
    
    		inorder(node.left, visitor);
    		if (visitor.stop) return;
    		visitor.stop = visitor.visit(node.element);
    		inorder(node.right, visitor);
    	}
    
    	public void postorder(Visitor<E> visitor) {
    		if (visitor == null) return;
    		postorder(root, visitor);
    	}
    
    	private void postorder(Node<E> node, Visitor<E> visitor) {
    		if (node == null || visitor.stop) return;
    
    		postorder(node.left, visitor);
    		postorder(node.right, visitor);
    		if (visitor.stop) return;
    		visitor.stop = visitor.visit(node.element);
    	}
    
    	public void levelOrder(Visitor<E> visitor) {
    		if (root == null || visitor == null) return;
    
    		Queue<Node<E>> queue = new LinkedList<>();
    		queue.offer(root);
    
    		while (!queue.isEmpty()) {
    			Node<E> node = queue.poll();
    			if (visitor.visit(node.element)) return;
    
    			if (node.left != null) {
    				queue.offer(node.left);
    			}
    
    			if (node.right != null) {
    				queue.offer(node.right);
    			}
    		}
    	}
    
    	public boolean isComplete() {
    		if (root == null) return false;
    		Queue<Node<E>> queue = new LinkedList<>();
    		queue.offer(root);
    
    		boolean leaf = false;
    		while (!queue.isEmpty()) {
    			Node<E> node = queue.poll();
    			if (leaf && !node.isLeaf()) return false;
    
    			if (node.left != null) {
    				queue.offer(node.left);
    			} else if (node.right != null) {
    				return false;
    			}
    
    			if (node.right != null) {
    				queue.offer(node.right);
    			} else { // 后面遍历的节点都必须是叶子节点
    				leaf = true;
    			}
    		}
    
    		return true;
    	}
    
    	public int height() {
    		if (root == null) return 0;
    
    		// 树的高度
    		int height = 0;
    		// 存储着每一层的元素数量
    		int levelSize = 1;
    		Queue<Node<E>> queue = new LinkedList<>();
    		queue.offer(root);
    
    		while (!queue.isEmpty()) {
    			Node<E> node = queue.poll();
    			levelSize--;
    
    			if (node.left != null) {
    				queue.offer(node.left);
    			}
    
    			if (node.right != null) {
    				queue.offer(node.right);
    			}
    
    			if (levelSize == 0) { // 意味着即将要访问下一层
    				levelSize = queue.size();
    				height++;
    			}
    		}
    
    		return height;
    	}
    
    	public int height2() {
    		return height(root);
    	}
    
    	private int height(Node<E> node) {
    		if (node == null) return 0;
    		return 1 + Math.max(height(node.left), height(node.right));
    	}
    
    	protected Node<E> predecessor(Node<E> node) {
    		if (node == null) return null;
    
    		// 前驱节点在左子树当中(left.right.right.right....)
    		Node<E> p = node.left;
    		if (p != null) {
    			while (p.right != null) {
    				p = p.right;
    			}
    			return p;
    		}
    
    		// 从父节点、祖父节点中寻找前驱节点
    		while (node.parent != null && node == node.parent.left) {
    			node = node.parent;
    		}
    
    		// node.parent == null
    		// node == node.parent.right
    		return node.parent;
    	}
    
    	protected Node<E> successor(Node<E> node) {
    		if (node == null) return null;
    
    		// 前驱节点在左子树当中(right.left.left.left....)
    		Node<E> p = node.right;
    		if (p != null) {
    			while (p.left != null) {
    				p = p.left;
    			}
    			return p;
    		}
    
    		// 从父节点、祖父节点中寻找前驱节点
    		while (node.parent != null && node == node.parent.right) {
    			node = node.parent;
    		}
    
    		return node.parent;
    	}
    
    	public static abstract class Visitor<E> {
    		boolean stop;
    		/**
    		 * @return 如果返回true,就代表停止遍历
    		 */
    		abstract boolean visit(E element);
    	}
    
    	protected static class Node<E> {
    		E element;
    		Node<E> left;
    		Node<E> right;
    		Node<E> parent;
    		public Node(E element, Node<E> parent) {
    			this.element = element;
    			this.parent = parent;
    		}
    
    		public boolean isLeaf() {
    			return left == null && right == null;
    		}
    
    		public boolean hasTwoChildren() {
    			return left != null && right != null;
    		}
    	}
    
    	@Override
    	public Object root() {
    		return root;
    	}
    
    	@Override
    	public Object left(Object node) {
    		return ((Node<E>)node).left;
    	}
    
    	@Override
    	public Object right(Object node) {
    		return ((Node<E>)node).right;
    	}
    
    	@Override
    	public Object string(Object node) {
    		Node<E> myNode = (Node<E>)node;
    		String parentString = "null";
    		if (myNode.parent != null) {
    			parentString = myNode.parent.element.toString();
    		}
    		return myNode.element + "_p(" + parentString + ")";
    	}
    }
    

hhhhh