二叉搜索树的概念
二叉搜索树的接口设计
添加节点
public void add(E element) {
elementNotNullCheck(element);
// 添加第一个节点
if (root == null) {
root = new Node<>(element, null);
size++;
return;
}
// 添加的不是第一个节点
// 找到父节点
Node<E> parent = root;
Node<E> node = root;
int cmp = 0;
while (node != null) {
cmp = compare(element, node.element);
parent = node;
if (cmp > 0) {
node = node.right;
} else if (cmp < 0) {
node = node.left;
} else { // 相等
node.element = element;
return;
}
}
// 看看插入到父节点的哪个位置
Node<E> newNode = new Node<>(element, parent);
if (cmp > 0) {
parent.right = newNode;
} else {
parent.left = newNode;
}
size++;
}
根据内容获取节点
private Node<E> node(E element) {
Node<E> node = root;
while (node != null) {
int cmp = compare(element, node.element);
if (cmp == 0) return node;
if (cmp > 0) {
node = node.right;
} else { // cmp < 0
node = node.left;
}
}
return null;
}
删除节点
删除节点为叶子节点
删除节点--度为1的节点
删除节点--度为2的节点
private void remove(Node<E> node) {
if (node == null) return;
size--;
if (node.hasTwoChildren()) { // 度为2的节点
// 找到后继节点
Node<E> s = successor(node);
// 用后继节点的值覆盖度为2的节点的值
node.element = s.element;
// 删除后继节点
node = s;
}
// 删除node节点(node的度必然是1或者0)
Node<E> replacement = node.left != null ? node.left : node.right;
if (replacement != null) { // node是度为1的节点
// 更改parent
replacement.parent = node.parent;
// 更改parent的left、right的指向
if (node.parent == null) { // node是度为1的节点并且是根节点
root = replacement;
} else if (node == node.parent.left) {
node.parent.left = replacement;
} else { // node == node.parent.right
node.parent.right = replacement;
}
} else if (node.parent == null) { // node是叶子节点并且是根节点
root = null;
} else { // node是叶子节点,但不是根节点
if (node == node.parent.left) {
node.parent.left = null;
} else { // node == node.parent.right
node.parent.right = null;
}
}
}
二叉搜索树继承自二叉树
时间复杂度分析
二叉搜索树的时间复杂度主要由树的高度决定,而与树的节点个数没有关系
添加、删除节点都有可能使二叉搜索树退化为链表
平衡:当节点数量固定时,左右子树的高度越接近,这棵二叉树就越平衡(高度越低)
总代码
-
BST
import java.util.Comparator; @SuppressWarnings("unchecked") public class BST<E> extends BinaryTree<E> { private Comparator<E> comparator; public BST() { this(null); } public BST(Comparator<E> comparator) { this.comparator = comparator; } public void add(E element) { elementNotNullCheck(element); // 添加第一个节点 if (root == null) { root = new Node<>(element, null); size++; return; } // 添加的不是第一个节点 // 找到父节点 Node<E> parent = root; Node<E> node = root; int cmp = 0; do { cmp = compare(element, node.element); parent = node; if (cmp > 0) { node = node.right; } else if (cmp < 0) { node = node.left; } else { // 相等 node.element = element; return; } } while (node != null); // 看看插入到父节点的哪个位置 Node<E> newNode = new Node<>(element, parent); if (cmp > 0) { parent.right = newNode; } else { parent.left = newNode; } size++; } public void remove(E element) { remove(node(element)); } public boolean contains(E element) { return node(element) != null; } private void remove(Node<E> node) { if (node == null) return; size--; if (node.hasTwoChildren()) { // 度为2的节点 // 找到后继节点 Node<E> s = successor(node); // 用后继节点的值覆盖度为2的节点的值 node.element = s.element; // 删除后继节点 node = s; } // 删除node节点(node的度必然是1或者0) Node<E> replacement = node.left != null ? node.left : node.right; if (replacement != null) { // node是度为1的节点 // 更改parent replacement.parent = node.parent; // 更改parent的left、right的指向 if (node.parent == null) { // node是度为1的节点并且是根节点 root = replacement; } else if (node == node.parent.left) { node.parent.left = replacement; } else { // node == node.parent.right node.parent.right = replacement; } } else if (node.parent == null) { // node是叶子节点并且是根节点 root = null; } else { // node是叶子节点,但不是根节点 if (node == node.parent.left) { node.parent.left = null; } else { // node == node.parent.right node.parent.right = null; } } } private Node<E> node(E element) { Node<E> node = root; while (node != null) { int cmp = compare(element, node.element); if (cmp == 0) return node; if (cmp > 0) { node = node.right; } else { // cmp < 0 node = node.left; } } return null; } /** * @return 返回值等于0,代表e1和e2相等;返回值大于0,代表e1大于e2;返回值小于于0,代表e1小于e2 */ private int compare(E e1, E e2) { if (comparator != null) { return comparator.compare(e1, e2); } return ((Comparable<E>) e1).compareTo(e2); } private void elementNotNullCheck(E element) { if (element == null) { throw new IllegalArgumentException("element must not be null"); } } }
-
BinaryTree
import java.util.LinkedList; import java.util.Queue; import com.mj.printer.BinaryTreeInfo; @SuppressWarnings("unchecked") public class BinaryTree<E> implements BinaryTreeInfo { protected int size; protected Node<E> root; public int size() { return size; } public boolean isEmpty() { return size == 0; } public void clear() { root = null; size = 0; } public void preorder(Visitor<E> visitor) { if (visitor == null) return; preorder(root, visitor); } private void preorder(Node<E> node, Visitor<E> visitor) { if (node == null || visitor.stop) return; visitor.stop = visitor.visit(node.element); preorder(node.left, visitor); preorder(node.right, visitor); } public void inorder(Visitor<E> visitor) { if (visitor == null) return; inorder(root, visitor); } private void inorder(Node<E> node, Visitor<E> visitor) { if (node == null || visitor.stop) return; inorder(node.left, visitor); if (visitor.stop) return; visitor.stop = visitor.visit(node.element); inorder(node.right, visitor); } public void postorder(Visitor<E> visitor) { if (visitor == null) return; postorder(root, visitor); } private void postorder(Node<E> node, Visitor<E> visitor) { if (node == null || visitor.stop) return; postorder(node.left, visitor); postorder(node.right, visitor); if (visitor.stop) return; visitor.stop = visitor.visit(node.element); } public void levelOrder(Visitor<E> visitor) { if (root == null || visitor == null) return; Queue<Node<E>> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { Node<E> node = queue.poll(); if (visitor.visit(node.element)) return; if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } } } public boolean isComplete() { if (root == null) return false; Queue<Node<E>> queue = new LinkedList<>(); queue.offer(root); boolean leaf = false; while (!queue.isEmpty()) { Node<E> node = queue.poll(); if (leaf && !node.isLeaf()) return false; if (node.left != null) { queue.offer(node.left); } else if (node.right != null) { return false; } if (node.right != null) { queue.offer(node.right); } else { // 后面遍历的节点都必须是叶子节点 leaf = true; } } return true; } public int height() { if (root == null) return 0; // 树的高度 int height = 0; // 存储着每一层的元素数量 int levelSize = 1; Queue<Node<E>> queue = new LinkedList<>(); queue.offer(root); while (!queue.isEmpty()) { Node<E> node = queue.poll(); levelSize--; if (node.left != null) { queue.offer(node.left); } if (node.right != null) { queue.offer(node.right); } if (levelSize == 0) { // 意味着即将要访问下一层 levelSize = queue.size(); height++; } } return height; } public int height2() { return height(root); } private int height(Node<E> node) { if (node == null) return 0; return 1 + Math.max(height(node.left), height(node.right)); } protected Node<E> predecessor(Node<E> node) { if (node == null) return null; // 前驱节点在左子树当中(left.right.right.right....) Node<E> p = node.left; if (p != null) { while (p.right != null) { p = p.right; } return p; } // 从父节点、祖父节点中寻找前驱节点 while (node.parent != null && node == node.parent.left) { node = node.parent; } // node.parent == null // node == node.parent.right return node.parent; } protected Node<E> successor(Node<E> node) { if (node == null) return null; // 前驱节点在左子树当中(right.left.left.left....) Node<E> p = node.right; if (p != null) { while (p.left != null) { p = p.left; } return p; } // 从父节点、祖父节点中寻找前驱节点 while (node.parent != null && node == node.parent.right) { node = node.parent; } return node.parent; } public static abstract class Visitor<E> { boolean stop; /** * @return 如果返回true,就代表停止遍历 */ abstract boolean visit(E element); } protected static class Node<E> { E element; Node<E> left; Node<E> right; Node<E> parent; public Node(E element, Node<E> parent) { this.element = element; this.parent = parent; } public boolean isLeaf() { return left == null && right == null; } public boolean hasTwoChildren() { return left != null && right != null; } } @Override public Object root() { return root; } @Override public Object left(Object node) { return ((Node<E>)node).left; } @Override public Object right(Object node) { return ((Node<E>)node).right; } @Override public Object string(Object node) { Node<E> myNode = (Node<E>)node; String parentString = "null"; if (myNode.parent != null) { parentString = myNode.parent.element.toString(); } return myNode.element + "_p(" + parentString + ")"; } }
Comments | 0 条评论