二分算法框架
- 1)最基本的二分搜索
public int binarySearch(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
return mid;
} else if (nums[mid] > target) {
right = mid - 1;
} else if (nums[mid] < target) {
left = mid + 1;
}
}
return -1;
}
- 2)寻找左侧边界
//在arr上,找满足>=value的最左位置
//例 [1,1,2,2,2,2,3,3,4] value=2 则index=2
public int leftBound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
right = mid - 1;
} else if (nums[mid] > target) {
left = mid + 1;
} else if (nums[mid] < target) {
right = mid - 1;
}
}
//left = right + 1, left即为要找的值
if (left > nums.length || nums[left] != target)
return -1;
return left;
}
- 3)寻找右侧边界
public int rightBound(int[] nums, int target) {
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] == target) {
right = mid - 1;
} else if (nums[mid] > target) {
left = mid + 1;
} else if (nums[mid] < target) {
right = mid - 1;
}
}
//left = right + 1, right即为要找的值
if (right < 0 || nums[right] != target)
return -1;
return right;
}
- 4)局部最小值问题
public int getLessIndex(int[] nums) {
if (nums == null || nums.length == 0) return -1;
if (nums.length == 1 || nums[0] < nums[1]) return 0;
if (nums[nums.length - 1] < nums[nums.length - 2]) return nums.length - 1;
int left = 0, right = nums.length - 1;
while (left <= right) {
int mid = left + (right - left) / 2;
if (nums[mid] > nums[mid - 1]) {
right = mid - 1;
} else if (nums[mid] > nums[mid + 1]) {
left = mid + 1;
} else {
return mid;
}
}
return -1;
}
一些二分STL(适用于排序后的数组)
- lower_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于或等于num的数字,找到返回该数字的地址,不存在则返回end。
- upper_bound( begin,end,num):从数组的begin位置到end-1位置二分查找第一个大于num的数字,找到返回该数字的地址,不存在则返回end。
例题
const int maxn = 1e5 + 6;
int n, k;
ll a[maxn];
//判断p是否合适
int check(ll p) {
int i = 0;
for (int j = 0; j < k; j++) {
ll s = 0;
while (s + a[i] <= p) {
s += a[i];
i++;
if (i == n) return n;
}
}
return i;
}
ll go() {
ll left = 0;
ll right = 1e9 + 1;
ll mid;
//使用二分
while (left + 1 < right) {
mid = m(left, right);
int v = check(mid);
if (v >= n) right = mid;
else left = mid;
}
return right;
}
int main() {
cin >> n >> k;
for (int i = 0; i < n; i++) {
cin >> a[i];
}
ll ans = go();
cout << ans << endl;
}
题目:判断子序列
- 解法一:双指针
从左到右遍历一次即可
class Solution {
public boolean isSubsequence(String s, String t) {
int m = s.length();
int n = t.length();
int i = 0, j = 0;
while (i < m && j < n) {
if (s.charAt(i) == t.charAt(j)) {
i++;
j++;
} else {
j++;
}
}
return i == m;
}
}
- 解法二:二分算法
用hash表遍历一次总字符串,记录a~z出现的index,要求s[i]比s[i-1]的对应t中的index大即可。
class Solution {
public boolean isSubsequence(String s, String t) {
HashMap<Character, ArrayList<Integer>> map = new HashMap<>();
for (char c = 'a'; c <= 'z'; c++) {
map.put(c, new ArrayList<>());
}
for (int i = 0; i < t.length(); i++) {
map.get(t.charAt(i)).add(i);
}
int index = -1;
for (char c : s.toCharArray()) {
ArrayList<Integer> tmp = map.get(c);
int left = 0, right = tmp.size();
int tmp_index = -1;
while (left < right) {
int mid = left + ((right - left) >> 1);
if (tmp.get(mid) > index) {
tmp_index = tmp.get(mid);
right = mid;
} else {
left = mid + 1;
}
}
if (tmp_index != -1) {
index = tmp_index;
} else {
return false;
}
}
return true;
}
}
题目:元素和小于等于阈值的正方形的最大边长
给你一个大小为 m x n 的矩阵 mat 和一个整数阈值 threshold。
请你返回元素总和小于或等于阈值的正方形区域的最大边长;如果没有这样的正方形区域,则返回 0 。
思路
- 利用二维前缀和表示出数组的和
dp[i][j] = mat[i - 1][j - 1] + dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1]
,这里dp[i][j]表示mat[i-1][j-1]的前缀和,之后可以使用dp[i][j] - dp[i - k][j] - dp[i][j - k] + dp[i - k][j - k]
来表示以dp[i][j]为结尾、k为边长的正方形的和 - 使用一个方法来计算边长k是否符合要求(边长为k的正方形元素总和小于或等于阈值)
- 利用二分得出[0,min(m,n)]中符合要求的最大边长
- 若mid符合要求,则left=mid+1
- 若mid不符合要求,则right=mid-1
代码
class Solution {
public:
static const int maxn = 302;
int dp[maxn][maxn], m, n;
int maxSideLength(vector<vector<int>> &mat, int threshold) {
m = mat.size(), n = mat[0].size();
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
dp[i][j] = mat[i - 1][j - 1] + dp[i - 1][j] + dp[i][j - 1] - dp[i - 1][j - 1];
}
}
int left = 0, right = min(m, n), ans = 0;
while (left <= right) {
int mid = left + ((right - left) >> 1);
if (help(mid, threshold)) {
ans = mid;
left = mid + 1;
} else {
right = mid - 1;
}
}
return ans;
}
bool help(int k, int shold) {
for (int i = 1; i <= m; i++) {
for (int j = 1; j <= n; j++) {
if (i - k < 0 || j - k < 0) {
continue;
}
if (dp[i][j] - dp[i - k][j] - dp[i][j - k] + dp[i - k][j - k] <= shold) {
return true;
}
}
}
return false;
}
};
Comments | 0 条评论