Redis基本事务操作

Exec 单条命令式保存原子性的,但是事务不保证原子性!

Redis 事务本质:一组命令的集合! 一个事务中的所有命令都会被序列化,在事务执行过程的中,会按 照顺序执行!

  • 一次性、顺序性、排他性!执行一系列的命令!
  • Redis事务没有没有隔离级别的概念!
  • 所有的命令在事务中,并没有直接被执行!只有发起执行命令的时候才会执行!

redis的事务

  • 开启事务(multi
  • 命令入队(......)
  • 执行事务(exec

正常执行事务

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k1 v1
QUEUED
127.0.0.1:6379> get k1
QUEUED
127.0.0.1:6379> set k2 v2
QUEUED
127.0.0.1:6379> exec
1) OK
2) "v1"
3) OK

取消事务

127.0.0.1:6379> multi 
OK
127.0.0.1:6379> set k3 v3
QUEUED
127.0.0.1:6379> discard   #取消事务
OK
127.0.0.1:6379> get k3
(nil)       # 事务队列中命令都不会被执行! 

编译型异常(代码有问题! 命令有错!) ,事务中所有的命令都不会被执行!

127.0.0.1:6379> multi
OK
127.0.0.1:6379> set k3    # 错误的命令
(error) ERR wrong number of arguments for 'set' command
127.0.0.1:6379> get k1
QUEUED
127.0.0.1:6379> exec      # 执行事务报错,所有命令都不会执行
(error) EXECABORT Transaction discarded because of previous errors.

运行时异常, 如果事务队列中存在语法性,那么执行命令的时候,其他命令是可以正常执行 的,错误命令抛出异常!

127.0.0.1:6379> set num hell0
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> incr num   # 执行的时候失败
QUEUED
127.0.0.1:6379> get num
QUEUED
127.0.0.1:6379> exec
1) (error) ERR value is not an integer or out of range  # 第一条命令失败
2) "hell0"           # 第二条命令成功

Redis实现乐观锁

  • 悲观锁

    • 很悲观,认为什么时候都会出问题,无论做什么都会加锁!
  • 乐观锁

    • 很乐观,认为什么时候都不会出问题,所以不会上锁!
    • 更新数据的时候去判断一下,在此期间是否 有人修改过这个数据
    • 获取version
    • 更新的时候比较 version

监视(watch)

127.0.0.1:6379> watch money   # 监视money 
OK 
127.0.0.1:6379> multi 
OK 
127.0.0.1:6379> DECRBY money 10 
QUEUED 
127.0.0.1:6379> INCRBY out 10 
QUEUED 
127.0.0.1:6379> exec  # 执行之前,另外一个线程,修改了我们的值,这个时候,就会导致事务执行失败! (nil)

如果修改失败,获取新的值就好

127.0.0.1:6379> unwatch  # 若事务进行失败,先解锁
OK
127.0.0.1:6379> watch money  # 获取最新的值,再次监视
OK
127.0.0.1:6379> multi
OK
127.0.0.1:6379> incr money
QUEUED
127.0.0.1:6379> decrby money 10
QUEUED
127.0.0.1:6379> exec     # 对比监视的值是否发生变化,若未发生变化则成功,发生变化重新进行事务
1) (integer) 111
2) (integer) 101

Jedis

Jedis 是 Redis 官方推荐的 java连接开发工具! 使用Java 操作Redis 中间件!如果你要使用 java操作redis,那么一定要对Jedis 十分的熟悉!

1、导入对应的依赖

<dependency>
    <groupId>redis.clients</groupId>
    <artifactId>jedis</artifactId>
    <version>3.3.0</version>
</dependency>

2、样例测试

public static void main(String[] args) {
    Jedis jedis = new Jedis("192.168.6.20", 6379);
    jedis.auth("Redis!2333");    //连接redis
    System.out.println(jedis.ping());  //执行操作
    jedis.close();   //断开连接
}

Jedis使用事务

    public static void main(String[] args) {
        Jedis jedis = new Jedis("192.168.6.20", 6379);
        jedis.auth("Redis!2333");

        jedis.flushDB();
        //开启事务
        Transaction multi = jedis.multi();
        try {
            jedis.set("k1", "v1");
            jedis.set("k2", "v2");
            int i = 3 / 0;  //抛出异常,执行失败
            multi.exec();  //执行事务
        } catch (Exception e) {
            multi.discard();  //放弃事务
            e.printStackTrace();
        } finally {
            jedis.close();  //关闭连接
        }
    }

SpringBoot整合Redis

在 SpringBoot2.x 之后,原来使用的jedis 被替换为了 lettuce?

jedis : 采用的直连,多个线程操作的话,是不安全的,如果想要避免不安全的,使用 jedis pool 连接池! 更像 BIO 模式

lettuce : 采用netty,实例可以再多个线程中进行共享,不存在线程不安全的情况!可以减少线程数据 了,更像 NIO 模式

1、导入依赖

<dependency>
    <groupId>org.springframework.boot</groupId>
    <artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>

2、配置连接

spring:
  redis:
    host: 192.168.6.20
    port: 6379
    password: Redis!2333

3、测试

@SpringBootTest
class RedisSpringbootApplicationTests {
    @Autowired
    RedisTemplate redisTemplate;

    // redisTemplate  操作不同的数据类型,api和我们的指令是一样的        
    // opsForValue  操作字符串 类似String        
    // opsForList   操作List 类似List        
    // opsForSet        
    // opsForHash        
    // opsForZSet        
    // opsForGeo        
    // opsForHyperLogLog
    // 除了进本的操作,我们常用的方法都可以直接通过redisTemplate操作,比如事务,和基本的 CRUD

    @Test
    void contextLoads() throws JsonProcessingException {
        //若user对象未序列化,则会报错
        redisTemplate.opsForValue().set("k1", new User("aa", 12));
        System.out.println(redisTemplate.opsForValue().get("k1"));
    }
}

4、自定义编写RedisTemplete

import com.fasterxml.jackson.annotation.JsonAutoDetect;
import com.fasterxml.jackson.annotation.PropertyAccessor;
import com.fasterxml.jackson.databind.ObjectMapper;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.Jackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.StringRedisSerializer;

@Configuration
public class RedisConfig {

    // 这是我给大家写好的一个固定模板,大家在企业中,拿去就可以直接使用!
    // 自己定义了一个 RedisTemplate
    @Bean
    @SuppressWarnings("all")
    public RedisTemplate<String, Object> redisTemplate(RedisConnectionFactory factory) {
        // 我们为了自己开发方便,一般直接使用 <String, Object>
        RedisTemplate<String, Object> template = new RedisTemplate<String, Object>();
        template.setConnectionFactory(factory);

        // Json序列化配置
        Jackson2JsonRedisSerializer jackson2JsonRedisSerializer = new Jackson2JsonRedisSerializer(Object.class);
        ObjectMapper om = new ObjectMapper();
        om.setVisibility(PropertyAccessor.ALL, JsonAutoDetect.Visibility.ANY);
        om.enableDefaultTyping(ObjectMapper.DefaultTyping.NON_FINAL);
        jackson2JsonRedisSerializer.setObjectMapper(om);
        // String 的序列化
        StringRedisSerializer stringRedisSerializer = new StringRedisSerializer();

        // key采用String的序列化方式
        template.setKeySerializer(stringRedisSerializer);
        // hash的key也采用String的序列化方式
        template.setHashKeySerializer(stringRedisSerializer);
        // value序列化方式采用jackson
        template.setValueSerializer(jackson2JsonRedisSerializer);
        // hash的value序列化方式采用jackson
        template.setHashValueSerializer(jackson2JsonRedisSerializer);
        template.afterPropertiesSet();

        return template;
    }

}

Redis.conf详解

vim /etc/redis/6379.conf ->配置文件

单位

# 1k => 1000 bytes
# 1kb => 1024 bytes
# 1m => 1000000 bytes
# 1mb => 1024*1024 bytes
# 1g => 1000000000 bytes
# 1gb => 1024*1024*1024 bytes
#
# units are case insensitive so 1GB 1Gb 1gB are all the same.
# 配置文件 unit单位 对大小写不敏感!

包含

多个配置文件

# include /path/to/local.conf
# include /path/to/other.conf

网络

bind 0.0.0.0    # 绑定的ip ,这里表示所有ip都可连接
protected-mode yes # 保护模式 
port 6379  # 端口设置

通用 GENERAL

daemonize yes   # 以守护进程的方式运行,默认是 no,我们需要自己开启为yes!
pidfile /var/run/redis_6379.pid  # 如果以后台的方式运行,我们就需要指定一个 pid 文件!

# 日志 
# Specify the server verbosity level. # This can be one of:
# debug (a lot of information, useful for development/testing)   
# verbose (many rarely useful info, but not a mess like the debug level) 
# notice (moderately verbose, what you want in production probably) 生产环境 
# warning (only very important / critical messages are logged) 
loglevel notice 
logfile "" # 日志的文件位置名 
databases 16  # 数据库的数量,默认是 16 个数据库 
always-show-logo yes  # 是否总是显示LOGO

快照

持久化, 在规定的时间内,执行了多少次操作,则会持久化到文件 .rdb. aof
redis 是内存数据库,如果没有持久化,那么数据断电及失!

# 如果900s内,如果至少有一个1 key进行了修改,我们及进行持久化操作 
save 900 1 
# 如果300s内,如果至少10 key进行了修改,我们及进行持久化操作 
save 300 10 
# 如果60s内,如果至少10000 key进行了修改,我们及进行持久化操作 
save 60 10000 
# 我们之后学习持久化,会自己定义这个测试!

stop-writes-on-bgsave-error yes   # 持久化如果出错,是否还需要继续工作!
rdbcompression yes # 是否压缩 rdb 文件,需要消耗一些cpu资源!
rdbchecksum yes # 保存rdb文件的时候,进行错误的检查校验!
dir ./  # rdb 文件保存的目录!

REPLICATION 复制

我们后面讲解主从复制的时候再进行讲解

SECURITY 安全

requirepass Redis!2333  # 密码

限制 CLIENTS

maxclients 10000   # 设置能连接上redis的大客户端的数量
maxmemory <bytes>  # redis 配置大的内存容量
maxmemory-policy noeviction  # 内存到达上限之后的处理策略    
	1、volatile-lru:只对设置了过期时间的key进行LRU(默认值)     
	2、allkeys-lru : 删除lru算法的key       
	3、volatile-random:随机删除即将过期key       
	4、allkeys-random:随机删除       
	5、volatile-ttl : 删除即将过期的       
	6、noeviction : 永不过期,返回错误

APPEND ONLY 模式 aof配置

appendonly no  # 默认是不开启aof模式的,默认是使用rdb方式持久化的,在大部分所有的情况下,rdb完全够用! 
appendfilename "appendonly.aof"  # 持久化的文件的名字

# appendfsync always   # 每次修改都会 sync。消耗性能 
appendfsync everysec   # 每秒执行一次 sync,可能会丢失这1s的数据! 
# appendfsync no       # 不执行 sync,这个时候操作系统自己同步数据,速度快! 

一些封装好的RedisUtil

import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.stereotype.Component;
import org.springframework.util.CollectionUtils;

import java.util.List;
import java.util.Map;
import java.util.Set;
import java.util.concurrent.TimeUnit;

// 在我们真实的分发中,或者你们在公司,一般都可以看到一个公司自己封装RedisUtil
@Component
public final class RedisUtil {

    @Autowired
    private RedisTemplate<String, Object> redisTemplate;
    
    // =============================common============================
    /**
     * 指定缓存失效时间
     * @param key  键
     * @param time 时间(秒)
     */
    public boolean expire(String key, long time) {
        try {
            if (time > 0) {
                redisTemplate.expire(key, time, TimeUnit.SECONDS);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 根据key 获取过期时间
     * @param key 键 不能为null
     * @return 时间(秒) 返回0代表为永久有效
     */
    public long getExpire(String key) {
        return redisTemplate.getExpire(key, TimeUnit.SECONDS);
    }


    /**
     * 判断key是否存在
     * @param key 键
     * @return true 存在 false不存在
     */
    public boolean hasKey(String key) {
        try {
            return redisTemplate.hasKey(key);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 删除缓存
     * @param key 可以传一个值 或多个
     */
    @SuppressWarnings("unchecked")
    public void del(String... key) {
        if (key != null && key.length > 0) {
            if (key.length == 1) {
                redisTemplate.delete(key[0]);
            } else {
                redisTemplate.delete(CollectionUtils.arrayToList(key));
            }
        }
    }


    // ============================String=============================

    /**
     * 普通缓存获取
     * @param key 键
     * @return 值
     */
    public Object get(String key) {
        return key == null ? null : redisTemplate.opsForValue().get(key);
    }
    
    /**
     * 普通缓存放入
     * @param key   键
     * @param value 值
     * @return true成功 false失败
     */

    public boolean set(String key, Object value) {
        try {
            redisTemplate.opsForValue().set(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 普通缓存放入并设置时间
     * @param key   键
     * @param value 值
     * @param time  时间(秒) time要大于0 如果time小于等于0 将设置无限期
     * @return true成功 false 失败
     */

    public boolean set(String key, Object value, long time) {
        try {
            if (time > 0) {
                redisTemplate.opsForValue().set(key, value, time, TimeUnit.SECONDS);
            } else {
                set(key, value);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 递增
     * @param key   键
     * @param delta 要增加几(大于0)
     */
    public long incr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递增因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, delta);
    }


    /**
     * 递减
     * @param key   键
     * @param delta 要减少几(小于0)
     */
    public long decr(String key, long delta) {
        if (delta < 0) {
            throw new RuntimeException("递减因子必须大于0");
        }
        return redisTemplate.opsForValue().increment(key, -delta);
    }


    // ================================Map=================================

    /**
     * HashGet
     * @param key  键 不能为null
     * @param item 项 不能为null
     */
    public Object hget(String key, String item) {
        return redisTemplate.opsForHash().get(key, item);
    }
    
    /**
     * 获取hashKey对应的所有键值
     * @param key 键
     * @return 对应的多个键值
     */
    public Map<Object, Object> hmget(String key) {
        return redisTemplate.opsForHash().entries(key);
    }
    
    /**
     * HashSet
     * @param key 键
     * @param map 对应多个键值
     */
    public boolean hmset(String key, Map<String, Object> map) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * HashSet 并设置时间
     * @param key  键
     * @param map  对应多个键值
     * @param time 时间(秒)
     * @return true成功 false失败
     */
    public boolean hmset(String key, Map<String, Object> map, long time) {
        try {
            redisTemplate.opsForHash().putAll(key, map);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 向一张hash表中放入数据,如果不存在将创建
     *
     * @param key   键
     * @param item  项
     * @param value 值
     * @param time  时间(秒) 注意:如果已存在的hash表有时间,这里将会替换原有的时间
     * @return true 成功 false失败
     */
    public boolean hset(String key, String item, Object value, long time) {
        try {
            redisTemplate.opsForHash().put(key, item, value);
            if (time > 0) {
                expire(key, time);
            }
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 删除hash表中的值
     *
     * @param key  键 不能为null
     * @param item 项 可以使多个 不能为null
     */
    public void hdel(String key, Object... item) {
        redisTemplate.opsForHash().delete(key, item);
    }


    /**
     * 判断hash表中是否有该项的值
     *
     * @param key  键 不能为null
     * @param item 项 不能为null
     * @return true 存在 false不存在
     */
    public boolean hHasKey(String key, String item) {
        return redisTemplate.opsForHash().hasKey(key, item);
    }


    /**
     * hash递增 如果不存在,就会创建一个 并把新增后的值返回
     *
     * @param key  键
     * @param item 项
     * @param by   要增加几(大于0)
     */
    public double hincr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, by);
    }


    /**
     * hash递减
     *
     * @param key  键
     * @param item 项
     * @param by   要减少记(小于0)
     */
    public double hdecr(String key, String item, double by) {
        return redisTemplate.opsForHash().increment(key, item, -by);
    }


    // ============================set=============================

    /**
     * 根据key获取Set中的所有值
     * @param key 键
     */
    public Set<Object> sGet(String key) {
        try {
            return redisTemplate.opsForSet().members(key);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }


    /**
     * 根据value从一个set中查询,是否存在
     *
     * @param key   键
     * @param value 值
     * @return true 存在 false不存在
     */
    public boolean sHasKey(String key, Object value) {
        try {
            return redisTemplate.opsForSet().isMember(key, value);
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 将数据放入set缓存
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSet(String key, Object... values) {
        try {
            return redisTemplate.opsForSet().add(key, values);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }


    /**
     * 将set数据放入缓存
     *
     * @param key    键
     * @param time   时间(秒)
     * @param values 值 可以是多个
     * @return 成功个数
     */
    public long sSetAndTime(String key, long time, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().add(key, values);
            if (time > 0)
                expire(key, time);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }


    /**
     * 获取set缓存的长度
     *
     * @param key 键
     */
    public long sGetSetSize(String key) {
        try {
            return redisTemplate.opsForSet().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }


    /**
     * 移除值为value的
     *
     * @param key    键
     * @param values 值 可以是多个
     * @return 移除的个数
     */

    public long setRemove(String key, Object... values) {
        try {
            Long count = redisTemplate.opsForSet().remove(key, values);
            return count;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }

    // ===============================list=================================
    
    /**
     * 获取list缓存的内容
     *
     * @param key   键
     * @param start 开始
     * @param end   结束 0 到 -1代表所有值
     */
    public List<Object> lGet(String key, long start, long end) {
        try {
            return redisTemplate.opsForList().range(key, start, end);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }


    /**
     * 获取list缓存的长度
     *
     * @param key 键
     */
    public long lGetListSize(String key) {
        try {
            return redisTemplate.opsForList().size(key);
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }
    }


    /**
     * 通过索引 获取list中的值
     *
     * @param key   键
     * @param index 索引 index>=0时, 0 表头,1 第二个元素,依次类推;index<0时,-1,表尾,-2倒数第二个元素,依次类推
     */
    public Object lGetIndex(String key, long index) {
        try {
            return redisTemplate.opsForList().index(key, index);
        } catch (Exception e) {
            e.printStackTrace();
            return null;
        }
    }


    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     */
    public boolean lSet(String key, Object value) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }


    /**
     * 将list放入缓存
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     */
    public boolean lSet(String key, Object value, long time) {
        try {
            redisTemplate.opsForList().rightPush(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }

    }


    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @return
     */
    public boolean lSet(String key, List<Object> value) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }

    }


    /**
     * 将list放入缓存
     *
     * @param key   键
     * @param value 值
     * @param time  时间(秒)
     * @return
     */
    public boolean lSet(String key, List<Object> value, long time) {
        try {
            redisTemplate.opsForList().rightPushAll(key, value);
            if (time > 0)
                expire(key, time);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 根据索引修改list中的某条数据
     *
     * @param key   键
     * @param index 索引
     * @param value 值
     * @return
     */

    public boolean lUpdateIndex(String key, long index, Object value) {
        try {
            redisTemplate.opsForList().set(key, index, value);
            return true;
        } catch (Exception e) {
            e.printStackTrace();
            return false;
        }
    }

    /**
     * 移除N个值为value
     *
     * @param key   键
     * @param count 移除多少个
     * @param value 值
     * @return 移除的个数
     */

    public long lRemove(String key, long count, Object value) {
        try {
            Long remove = redisTemplate.opsForList().remove(key, count, value);
            return remove;
        } catch (Exception e) {
            e.printStackTrace();
            return 0;
        }

    }

}

hhhhh