1.用户态和内核态
内核态:cpu可以访问内存的所有数据,包括外围设备,例如硬盘,网卡,cpu也可以将自己从一个程序切换到另一个程序。
用户态:只能受限的访问内存,且不允许访问外围设备,占用cpu的能力被剥夺,cpu资源可以被其他程序获取。
用户态与内核态的切换
所有用户程序都是运行在用户态的, 但是有时候程序确实需要做一些内核态的事情, 例如从硬盘读取数据, 或者从键盘获取输入等. 而唯一可以做这些事情的就是操作系统, 所以此时程序就需要向操作系统请求以程序的名义来执行这些操作.
这时需要一个这样的机制: 用户态程序切换到内核态, 但是不能控制在内核态中执行的指令
这种机制叫系统调用, 在CPU中的实现称之为陷阱指令(Trap Instruction)
JDK早期,synchronized 叫做重量级锁, 因为申请锁资源必须通过kernel(内核), 系统调用
2.CAS
CAS 全拼(compare and swap)/ (compare and exchange)/ 自旋 / 自旋锁 / 无锁 (无重量锁)
-
因为经常配合循环操作,直到完成为止,所以泛指一类操作
-
cas(v, a, b) ,变量v,期待值a, 修改值b
-
它会有ABA问题:你的女朋友在离开你的这段儿时间经历了别的人
解决办法(版本号 AtomicStampedReference),基础类型简单值不需要版本号
3.Unsafe
AtomicInteger是线程安全的,它的底层方法最终会调用Unsafe这个类,这个类的底层是c++中的unsafe.cpp,最后会调用cmpxchg
方法
->接下来会调用LOCK_IF_MP(mp)
,意思是如果处理器是多核的,那么加上lock指令
#define LOCK_IF_MP(mp) "cmp $0, " #mp "; je 1f; lock; 1: "
->最终实现
cmpxchg = cas操作修改变量值
cmpxchg不是原子性的,可以被其他线程插入,但是加上lock
指令就可以保证原子性,不允许其他cpu打断
lock cmpxchg
->//硬件:lock指令在执行后面指令的时候锁定一个北桥信号(不采用锁总线的方式)
4.markword
对应头部的八个字节(64位),用来储存锁信息、GC信息等
5.锁升级过程
自旋锁什么时候升级为重量级锁?
为什么有自旋锁还需要重量级锁?
自旋是消耗CPU资源的,如果锁的时间长,或者自旋线程多,CPU会被大量消耗
重量级锁有等待队列,所有拿不到锁的进入等待队列,不需要消耗CPU资源
偏向锁是否一定比自旋锁效率高?
不一定,在明确知道会有多线程竞争的情况下,偏向锁肯定会涉及锁撤销,这时候直接使用自旋锁
JVM启动过程,会有很多线程竞争(明确),所以默认情况启动时不打开偏向锁,过一段儿时间再打开
new -> 偏向锁 -> 轻量级锁 -> 重量级锁
synchronized优化的过程和markword息息相关
用markword中最低的三位代表锁状态 其中1位是偏向锁位 两位是普通锁位
- Object o = new Object()
锁 = 0 01 无锁态
如果该bit位为0,则该对象未被锁定,并且禁止偏向;如果该bit位为1,则意味着该对象处于以下三种状态:
- 匿名偏向
如果偏向锁打开,默认是匿名偏向状态。在此状态下thread_ptr为NULL(0),意味着还没有线程偏向于这个锁对象。第一个试图获取该锁的线程将会面临这个情况,使用原子CAS指令可将该锁对象绑定于当前线程。这是允许偏向锁的类对象的初始状态。 - 可重偏向
在此状态下,偏向锁的epoch字段是无效的(与锁对象对应的klass的mark_prototype的epoch值不匹配)。下一个试图获取锁对象的线程将会面临这个情况,使用原子CAS指令可将该锁对象绑定于当前线程。在批量重偏向的操作中,未被持有的锁对象都被至于这个状态,以便允许被快速重偏向。 - 已偏向
这种状态下,thread ptr非空,且epoch为有效值——意味着其他线程正在只有这个锁对象。
- o.hashCode()
- 当一个对象已经计算过identity hash code,它就无法进入偏向锁状态;
- 当一个对象当前正处于偏向锁状态,并且需要计算其identity hash code的话,则它的偏向锁会被撤销,并且锁会膨胀为重量锁;
- 重量锁的实现中,ObjectMonitor类里有字段可以记录非加锁状态下的mark word,其中可以存储identity hash code的值。或者简单说就是重量锁可以存下identity hash code。
请一定要注意,这里讨论的hash code都只针对identity hash code。用户自定义的hashCode()方法所返回的值跟这里讨论的不是一回事。Identity hash code是未被覆写的 java.lang.Object.hashCode() 或者 java.lang.System.identityHashCode(Object) 所返回的值。
-
默认synchronized(o)
00 -> 轻量级锁
默认情况 偏向锁有个时延,默认是4秒
why? 因为JVM虚拟机自己有一些默认启动的线程,里面有好多sync代码,这些sync代码启动时就知道肯定会有竞争,如果使用偏向锁,就会造成偏向锁不断的进行锁撤销和锁升级的操作,效率较低。-XX:BiasedLockingStartupDelay=0
-
如果设定上述参数
new Object () -> 101 偏向锁 ->线程ID为0 -> Anonymous BiasedLock
打开偏向锁,new出来的对象,默认就是一个可偏向匿名对象101 -
如果有线程上锁
上偏向锁,指的就是,把markword的线程ID改为自己线程ID的过程
偏向锁不可重偏向 批量偏向 批量撤销 -
如果有线程竞争
撤销偏向锁,升级轻量级锁
线程在自己的线程栈生成LockRecord ,用CAS操作将markword设置为指向自己这个线程的LR的指针,设置成功者得到锁 -
如果竞争加剧
竞争加剧:有线程超过10次自旋, -XX:PreBlockSpin, 或者自旋线程数超过CPU核数的一半, 1.6之后,加入自适应自旋 Adapative Self Spinning , JVM自己控制
升级重量级锁:-> 向操作系统申请资源,linux mutex , CPU从3级-0级系统调用,线程挂起,进入等待队列,等待操作系统的调度,然后再映射回用户空间
(以上实验环境是JDK11,打开就是偏向锁,而JDK8默认对象头是无锁)
偏向锁默认是打开的,但是有一个时延,如果要观察到偏向锁,应该设定参数
如果计算过对象的hashCode,则对象无法进入偏向状态!
轻量级锁重量级锁的hashCode存在与什么地方?
答案:线程栈中,轻量级锁的LR中,或是代表重量级锁的ObjectMonitor的成员中
关于epoch: (不重要)
批量重偏向与批量撤销渊源:从偏向锁的加锁解锁过程中可看出,当只有一个线程反复进入同步块时,偏向锁带来的性能开销基本可以忽略,但是当有其他线程尝试获得锁时,就需要等到safe point时,再将偏向锁撤销为无锁状态或升级为轻量级,会消耗一定的性能,所以在多线程竞争频繁的情况下,偏向锁不仅不能提高性能,还会导致性能下降。于是,就有了批量重偏向与批量撤销的机制。
原理以class为单位,为每个class维护解决场景批量重偏向(bulk rebias)机制是为了解决:一个线程创建了大量对象并执行了初始的同步操作,后来另一个线程也来将这些对象作为锁对象进行操作,这样会导致大量的偏向锁撤销操作。批量撤销(bulk revoke)机制是为了解决:在明显多线程竞争剧烈的场景下使用偏向锁是不合适的。
一个偏向锁撤销计数器,每一次该class的对象发生偏向撤销操作时,该计数器+1,当这个值达到重偏向阈值(默认20)时,JVM就认为该class的偏向锁有问题,因此会进行批量重偏向。每个class对象会有一个对应的epoch字段,每个处于偏向锁状态对象的Mark Word中也有该字段,其初始值为创建该对象时class中的epoch的值。每次发生批量重偏向时,就将该值+1,同时遍历JVM中所有线程的栈,找到该class所有正处于加锁状态的偏向锁,将其epoch字段改为新值。下次获得锁时,发现当前对象的epoch值和class的epoch不相等,那就算当前已经偏向了其他线程,也不会执行撤销操作,而是直接通过CAS操作将其Mark Word的Thread Id 改成当前线程Id。当达到重偏向阈值后,假设该class计数器继续增长,当其达到批量撤销的阈值后(默认40),JVM就认为该class的使用场景存在多线程竞争,会标记该class为不可偏向,之后,对于该class的锁,直接走轻量级锁的逻辑。
锁升级的过程
-
JDK较早的版本 OS的资源 互斥量 用户态 -> 内核态的转换 重量级 效率比较低
-
现代版本进行了优化
无锁 - 偏向锁 -轻量级锁(自旋锁)-重量级锁
偏向锁 markword 上记录当前线程指针,下次同一个线程加锁的时候,不需要争用,只需要判断线程指针是否同一个,所以,偏向锁,偏向加锁的第一个线程 。hashCode备份在线程栈上 线程销毁,锁降级为无锁
有争用 锁升级为轻量级锁 每个线程有自己的LockRecord在自己的线程栈上,用CAS去争用markword的LR的指针,指针指向哪个线程的LR,哪个线程就拥有锁
自旋超过10次,升级为重量级锁 如果太多线程自旋 CPU消耗过大,不如升级为重量级锁,进入等待队列(不消耗CPU)-XX:PreBlockSpin
自旋锁在 JDK1.4.2 中引入,使用 -XX:+UseSpinning
来开启。JDK 6 中变为默认开启,并且引入了自适应的自旋锁(适应性自旋锁)。
自适应自旋锁意味着自旋的时间(次数)不再固定,而是由前一次在同一个锁上的自旋时间及锁的拥有者的状态来决定。如果在同一个锁对象上,自旋等待刚刚成功获得过锁,并且持有锁的线程正在运行中,那么虚拟机就会认为这次自旋也是很有可能再次成功,进而它将允许自旋等待持续相对更长的时间。如果对于某个锁,自旋很少成功获得过,那在以后尝试获取这个锁时将可能省略掉自旋过程,直接阻塞线程,避免浪费处理器资源。
偏向锁由于有锁撤销的过程revoke,会消耗系统资源,所以,在锁争用特别激烈的时候,用偏向锁未必效率高。还不如直接使用轻量级锁。
锁重入
sychronized是可重入锁
重入次数必须记录,因为要解锁几次必须得对应
偏向锁 自旋锁 -> 线程栈 -> LR + 1
重量级锁 -> ? ObjectMonitor字段上
synchronized vs Lock (CAS)
在高争用 高耗时的环境下synchronized效率更高
在低争用 低耗时的环境下CAS效率更高
synchronized到重量级之后是等待队列(不消耗CPU)
CAS(等待期间消耗CPU)
一切以实测为准
6.锁消除 lock eliminate
public void add(String str1,String str2){
StringBuffer sb = new StringBuffer();
sb.append(str1).append(str2);
}
我们都知道 StringBuffer 是线程安全的,因为它的关键方法都是被 synchronized 修饰过的,但我们看上面这段代码,我们会发现,sb 这个引用只会在 add 方法中使用,不可能被其它线程引用(因为是局部变量,栈私有),因此 sb 是不可能共享的资源,JVM 会自动消除 StringBuffer 对象内部的锁。
锁粗化 lock coarsening
public String test(String str){
int i = 0;
StringBuffer sb = new StringBuffer():
while(i < 100){
sb.append(str);
i++;
}
return sb.toString():
}
JVM 会检测到这样一连串的操作都对同一个对象加锁(while 循环内 100 次执行 append,没有锁粗化的就要进行100次加锁/解锁),此时JVM
就会将加锁的范围粗化到这一连串的操作的外部(比如 while 虚幻体外),使得这一连串操作只需要加一次锁即可。
锁降级(不重要)
https://www.zhihu.com/question/63859501
其实,只被VMThread访问,降级也就没啥意义了。所以可以简单认为锁降级不存在!
超线程
一个ALU + 两组Registers + PC
Synchronized、AtomicLong、LongAdder区别
- AtomicLong 是基于 CAS 方式自旋更新的(自旋锁);
- LongAdder 利用了分段锁 ,是把 value 分成若干cell。
- 并发量低的时候,直接 CAS 更新值,成功即结束。
- 并发量高的情况,CAS更新某个cell值和需要时对cell数据扩容,成功结束;
- 更新失败自旋 CAS 更新 cell值。
- 取值的时候,调用 sum() 方法进行每个cell累加。
AtomicLong 包含有原子性的读、写结合的api;
LongAdder 没有原子性的读、写结合的api,能保证结果最终一致性。
低并发场景AtomicLong 和 LongAdder 性能相似,高并发场景 LongAdder 性能优于 AtomicLong。
Comments | 0 条评论