介绍
主页:http://lmax-exchange.github.io/disruptor/
源码:https://github.com/LMAX-Exchange/disruptor
GettingStarted: https://github.com/LMAX-Exchange/disruptor/wiki/Getting-Started
api: http://lmax-exchange.github.io/disruptor/docs/index.html
maven: https://mvnrepository.com/artifact/com.lmax/disruptor
- 导入maven
<dependency>
<groupId>com.lmax</groupId>
<artifactId>disruptor</artifactId>
<version>3.4.2</version>
</dependency>
Disruptor的特点
对比ConcurrentLinkedQueue : 链表实现
JDK中没有ConcurrentArrayQueue,因为修改数组大小时需要重新复制数组,效率太低
Disruptor是数组实现的
无锁,高并发,使用环形Buffer,直接覆盖(不用清除,修改对象的参数)旧的数据,降低GC频率
实现了基于事件的生产者消费者模式(观察者模式)
RingBuffer
环形队列
只记录RingBuffer的序号(sequence),指向下一个可用的元素
采用数组实现,没有首尾指针
对比ConcurrentLinkedQueue,用数组实现的速度更快
假如长度为8,当添加到第12个元素的时候在哪个序号上呢?用12%8决定
当Buffer被填满的时候到底是覆盖还是等待,由Producer决定
长度设为2的n次幂,利于二进制计算,例如:12%8 = 12 & (8 - 1) pos = num & (size -1)
Disruptor开发步骤
-
定义Event - 队列中需要处理的元素
-
定义Event工厂(EventFactory),用于填充队列
这里牵扯到效率问题:disruptor初始化的时候,会调用Event工厂,对ringBuffer进行内存的提前分配
这样的好处有GC频率降低
-
定义EventHandler(消费者),处理容器中的元素
最普通简单的样例
public class LongEvent {
private long value;
public long getValue() {
return value;
}
public void setValue(long value) {
this.value = value;
}
}
//---------------------
public class LongEventFactory implements EventFactory<LongEvent> {
public LongEvent newInstance() {
return new LongEvent();
}
}
//---------------------
public class LongEventHandler implements EventHandler<LongEvent> {
public void onEvent(LongEvent longEvent, long l, boolean b) throws Exception {
System.out.println(longEvent.getValue());
}
}
//--------------------
public class LongEventProducer {
private final RingBuffer<LongEvent> ringBuffer;
public LongEventProducer(RingBuffer<LongEvent> ringBuffer) {
this.ringBuffer = ringBuffer;
}
public void onData(ByteBuffer buffer) {
long sequence = ringBuffer.next();
try {
LongEvent event = ringBuffer.get(sequence);
event.setValue(buffer.getLong(0));
} finally {
ringBuffer.publish(sequence);
}
}
}
//-------------------------
public class Main {
public static void main(String[] args) {
LongEventFactory factory = new LongEventFactory();
//must be power of 2
int ringBufferSize = 1024;
//初始化disruptor
Disruptor<LongEvent> disruptor = new Disruptor<LongEvent>(factory, ringBufferSize, Executors.defaultThreadFactory());
//消费者处理handler
disruptor.handleEventsWith(new LongEventHandler());
//开启disruptor
disruptor.start();
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
LongEventProducer producer = new LongEventProducer(ringBuffer);
ByteBuffer bb = ByteBuffer.allocate(8);//缓冲区域
for (long l = 0; l < 100; l++) {
bb.putLong(0, l);
//生产者生产
producer.onData(bb);
try {
Thread.sleep(100);
} catch (InterruptedException e) {
e.printStackTrace();
}
}
disruptor.shutdown();
}
}
事件发布模板
long sequence = ringBuffer.next(); // Grab the next sequence
try {
LongEvent event = ringBuffer.get(sequence); // Get the entry in the Disruptor
// for the sequence
event.set(8888L); // Fill with data
} finally {
ringBuffer.publish(sequence);
}
使用EventTranslator发布事件
//===============================================================
EventTranslator<LongEvent> translator1 = new EventTranslator<LongEvent>() {
@Override
public void translateTo(LongEvent event, long sequence) {
event.set(8888L);
}
};
ringBuffer.publishEvent(translator1);
//===============================================================
EventTranslatorOneArg<LongEvent, Long> translator2 = new EventTranslatorOneArg<LongEvent, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l) {
event.set(l);
}
};
ringBuffer.publishEvent(translator2, 7777L);
//===============================================================
EventTranslatorTwoArg<LongEvent, Long, Long> translator3 = new EventTranslatorTwoArg<LongEvent, Long, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l1, Long l2) {
event.set(l1 + l2);
}
};
ringBuffer.publishEvent(translator3, 10000L, 10000L);
//===============================================================
EventTranslatorThreeArg<LongEvent, Long, Long, Long> translator4 = new EventTranslatorThreeArg<LongEvent, Long, Long, Long>() {
@Override
public void translateTo(LongEvent event, long sequence, Long l1, Long l2, Long l3) {
event.set(l1 + l2 + l3);
}
};
ringBuffer.publishEvent(translator4, 10000L, 10000L, 1000L);
//===============================================================
EventTranslatorVararg<LongEvent> translator5 = new EventTranslatorVararg<LongEvent>() {
@Override
public void translateTo(LongEvent event, long sequence, Object... objects) {
long result = 0;
for(Object o : objects) {
long l = (Long)o;
result += l;
}
event.set(result);
}
};
ringBuffer.publishEvent(translator5, 10000L, 10000L, 10000L, 10000L);
使用Lamda表达式
package com.mashibing.disruptor;
import com.lmax.disruptor.RingBuffer;
import com.lmax.disruptor.dsl.Disruptor;
import com.lmax.disruptor.util.DaemonThreadFactory;
public class Main03
{
public static void main(String[] args) throws Exception
{
// Specify the size of the ring buffer, must be power of 2.
int bufferSize = 1024;
// Construct the Disruptor
Disruptor<LongEvent> disruptor = new Disruptor<>(LongEvent::new, bufferSize, DaemonThreadFactory.INSTANCE);
// Connect the handler
disruptor.handleEventsWith((event, sequence, endOfBatch) -> System.out.println("Event: " + event));
// Start the Disruptor, starts all threads running
disruptor.start();
// Get the ring buffer from the Disruptor to be used for publishing.
RingBuffer<LongEvent> ringBuffer = disruptor.getRingBuffer();
ringBuffer.publishEvent((event, sequence) -> event.set(10000L));
System.in.read();
}
}
ProducerType生产者线程模式
ProducerType有两种模式 Producer.MULTI和Producer.SINGLE
默认是MULTI,表示在多线程模式下产生sequence
如果确认是单线程生产者,那么可以指定SINGLE,效率会提升
如果是多个生产者(多线程),但模式指定为SINGLE,会出什么问题呢?
等待策略
1,(常用)BlockingWaitStrategy:通过线程阻塞的方式,等待生产者唤醒,被唤醒后,再循环检查依赖的sequence是否已经消费。
2,BusySpinWaitStrategy:线程一直自旋等待,可能比较耗cpu
3,LiteBlockingWaitStrategy:线程阻塞等待生产者唤醒,与BlockingWaitStrategy相比,区别在signalNeeded.getAndSet,如果两个线程同时访问一个访问waitfor,一个访问signalAll时,可以减少lock加锁次数.
4,LiteTimeoutBlockingWaitStrategy:与LiteBlockingWaitStrategy相比,设置了阻塞时间,超过时间后抛异常。
5,PhasedBackoffWaitStrategy:根据时间参数和传入的等待策略来决定使用哪种等待策略
6,TimeoutBlockingWaitStrategy:相对于BlockingWaitStrategy来说,设置了等待时间,超过后抛异常
7,(常用)YieldingWaitStrategy:尝试100次,然后Thread.yield()让出cpu
8, (常用)SleepingWaitStrategy : sleep
消费者异常处理
默认:disruptor.setDefaultExceptionHandler()
覆盖:disruptor.handleExceptionFor().with()
Comments | 0 条评论